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Anisotropy and inversion splittings in strongly coupled 
T (8 t and T (8 (e + tz) Jahn-Teller systems 

J L Dunn and C A Bates 
Physics Department, The University, Nottingham NG7 2RD, UK 

Received 9 August 1988 

Abstract. A method of studying strongly coupled Jahn-Teller (JT) systems using a unitary 
transformation and energy minimisation procedure, which was presented earlier by the 
present authors, is extended to include anisotropic corrections to the ground states of T I  C3 t 
and T, C3 (e + t2) JT systems. The results obtained are interpreted in terms of effective 
oscillator frequencies. The anisotropic states are then used to obtain analytical expressions 
for the inversion splittings between the TI and A2 ground states of TI C3 t JT systems, and 
between the TI and T2 ground states of TI C3 (e + t2) JT systems. The effective frequencies 
and inversion splittings are shown to compare well with those of existing analytical and 
numerical calculations, especially in regions of moderate coupling. 

1. Introduction 

It is well known that many Jahn-Teller (JT) systems have an inversion (or tunnelling) 
level which is absent in corresponding non-JT systems. Therefore, the detection of an 
inversion level in a spectroscopic experiment on an impurity in a crystal provides a simple 
means of showing that the impurity centre is JT active. 

The energy A of an inversion level relative to the ground state can be determined 
directly by experiments such as phonon scattering, thermal conductivity, infrared 
spectroscopy and Raman scattering (Challis and DeGoer 1984). Two examples of 
systems in which A has been measured by these techniques are A1203 : Ni3+ (Locatelli 
and De Goer 1974, Chase and Hao 1975) and A1203 : Mn3+ (Aurbach and Richards 
1975). However, these types of experiment have not been performed in many other 
systems owing to experimental difficulties. Furthermore, in most of these systems, there 
is admixing between the ground states and inversion levels due to perturbations such as 
spin-orbit coupling and strain, particularly when A is small, so that A can only be 
determined after a detailed analysis of the experimental data where such results are 
available (see, e.g. Hjortsberg etaZ(l988) for the MgO : Fe2+ system). 

The electron paramagnetic resonance (EPR) spectra from JT centres with pure orbital 
doublet ground states exhibit simple g = 2 behaviour, which is identical with the behav- 
iour of non-JT centres. The EPR spectra from systems with admixed doublet ground states 
differ greatlyfromsimpleg = 2spectra, as found, for example, by Reynolds andBoatner 
(1975) for Cu2+ ions in CaO. This therefore verifies the existence of JT effects in these 
systems. For orbital triplet systems, JT effects are most readily detected in EPR via Ham 
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reduction factors which multiply terms in effective and spin Hamiltonians with respect 
to their non-rr values. In all cases, it is difficult to produce a theoretical model to describe 
EPR spectra in detail. 

The aim of this paper is to obtain good expressions for the ground and tunnelling 
states of T €3 t and T 8 (e + t2) JT systems, which have received much less attention in 
the literature than E €3 e and T €3 e JT systems. The states obtained will be used to 
calculate an analytical expression for A which is valid for strong- and moderate-coupling 
strengths. The states can (at least in principle) beused to calculate the effect of strain 
and spin-orbit coupling, and hence as a basis for the modelling of EPR data. This is 
particularly useful for the modelling of some deep-level impurities in semiconductors. 

2. Background theory 

In standard analytical models for orbital triplet JT systems, a Hamiltonian '8 is written 
down to describe the vibrational and interaction energies of the JT centre, which is a 
function of phonon coordinates Q, and momenta P,. In this paper, the modes considered 
are the e-type modes Q, and Q,, and the t2-type modes Q4, Q ,  and Q6 of Td symmetry. 
The Hamiltonian is then diagonalised in the adiabatic limit (in which the P, terms are 
neglected), to produce eigenstates of energy E = E(Q,).  Values of the Q, are then found 
which minimise E. Many different solutions are generated, each of which defines either 
an energy well or a saddle point (Ham 1965, O'Brien 1969, Bersuker and Polinger 1974, 
Schultz and Silbey 1974,1976). Vibronic JTstates are obtained by multiplying the orbital 
states associated with each well by simple harmonic oscillator functions centred on the 
well. Either these states or linear combinations of them are good eigenstates of the 
system as a whole. 

It is well known that anisotropy in the shape of the wells can have a large effect on 
the vibronic states and their energies. The effect of anisotropy on the ground and 
inversion states of T €3 t JT systems has been included as a perturbation, with the Q, as 
dynamic variables (Opik and Pryce 1957, Moffit and Thorson 1957, Bersuker and 
Polinger 1983, Clerjaud and CBte 1989). These approaches are good in infinite coupling 
but are less accurate for more weakly coupled systems. 

The main drawback to the standard theories outlined above is that they are semi- 
classical, with the Q, being treated as dynamic variables. Bates et a1 (1987) and Dunn 
(1988) have recently developed an alternative approach, in which the Q, are treated 
quantum mechanically using second-quantised phonon operators. A unitary trans- 
formation U ,  which is a function of free parameters at, is applied to the Hamiltonian %, 
and the transformed Hamiltonian divided into two parts. One part is independent of the 
phonon operators, and so is a good Hamiltonian for determining the ground states of 
these systems. The a, are fixed to minimise the total energy E = E( a$) of eigenstates of 
this Hamiltonian. This generates wells, which correspond directly to those produced by 
the standard methods. However, the states associated with them are automatically 
vibronic, whereas in the previous theories oscillations were added somewhat arbitrarily. 

In this paper, the method of Bates et a1 (1987) and Dunn (1988) will be extended for 
T €3 t and T €3 (e + t2) JT systems by including the part of the transformed Hamiltonian 
which was excluded previously, again using fully quantum mechanical techniques. It will 
be shown that these corrections automatically give rise to anisotropic effects. The 
inversion splitting will be calculated for both systems using the anisotropic states, and 
the result compared with published analytical and numerical results. It will be shown 
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that the results of this method are particularly good in regions of moderate coupling, 
where standard theories become less good. The results presented are for TI ions in 
Td symmetry, although corresponding results for T, ions can be simply obtained by 
appropriate interchanges of the symmetry labels. 

2.1. Summary of the transformation method 

The vibronic Hamiltonian %e for a T I  ion in a tetrahedral cluster coupled to the e-type 
displacement modes Q ,  and Q, and to the tz-type modes Q 4 ,  Q ,  and Q6 can be written 
in the form 

where Pi is the momenta conjugate to Qj and the sum j is taken over the modes 8, E ,  4, 
5 and 6. E,, E,, T,,, T,, and Txy are orbital operators, which are defined in terms of an 
orbital 1 = 1 by 

E ,  = h[31: - 1(1 + l)] E ,  = ( f i / 4 ) ( 1 :  + l'?) 

V ,  and V, are the e- and t2-type ion-lattice coupling constants respectively, and the pl 
are the masses and the LO, the frequencies of each modej. It will be assumed that all pl = 
p and that we = W ,  = W E  and w 4  = o5 = 

Xquad is a Hamiltonian representing quadratic couplings. It has been shown that, of 
the four possible types of quadratic coupling, bilinear coupling has the most profound 
effect on the orthorhombic wells (Bersuker and Polinger 1974, Sakamoto 1982). This 
form of quadratic coupling will be the only one investigated in this paper. The 
Hamiltonian for bilinear coupling will be written as 

= 0,. 

= U Q ,  Q )  (2.3) 

(2.4) 

where L ( Q ,  Q )  is defined by appropriate substitution into the function 

L ( F ,  G) = - V B L ( F ~ G . ~ ~ T ~ ~  + F5GoyTzx +F6G~zTxy)  

where V,, is the bilinear coupling constant and 
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The orbital basis states are Ix), Iy) and / z )  where, in terms of the ml values of an orbital 
I =  1, 

12) = 10) 

In the method of Batesetal(l987) and Dunn (1988), the Hamiltonian (2.1) is written 

(2.7) 
where b: and bl are creation and annihilation operators for phonons of symmetry j .  A 
unitary transformation U is then applied to X ,  where 

quantum mechanically by substituting 

Q, = - V ( f i / 2 ~ m , ) ( b ,  + b:) P, = i w  (b ,  - b:) 

U = exp (i 7 a,.,) for j = 8,  E ,  4 , 5  and 6 (2.8) 

with the a, as free parameters. The transformation displaces the origin of each of the 
displacements Q, by -a$ The transformed Hamiltonian % (= U - l X U )  may be written 
as 

% = 911 + %; + %Je, 
where 

= -h[vlZ(E6'a8 + E t a t )  + ' d T y z a 4  + 'Zxa.5 + ' x y a 6 ) 1  

+ 4 h2 p,w;a; + 4 hw, + L(-ha,  -ha) 
I I 

The Hamiltonian is independent of the Q, and hence is a good Hamiltonian for 
determining approximate ground states of %. The values of the a] are then fixed to 
minimise the energy E = E(a,) of eigenstates of If the e-type couplings are strongest, 
there are found to be three sets of a, which minimise E. Each set of the a, defines a well 
along tetragonal axes in Q-space. If the t2-type couplings are strongest, there are four 
sets of a, which minimise E ,  each of which defines a well along trigonal axes in Q-space. 
In addition, there are six further solutions with energies between those of the tetragonal 
and trigonal wells, which, in linear coupling, corresponding to saddle points along 
orthorhombic axes in Q-space. In the presence of quadratic couplings, these solutions 
can be wells and can minimise E. 

The positions of the wells are equivalent to those obtained previously if the 
substitution Q, = -ajh is made. Each of the wells will be labelled by an index k ,  where 
k = 1-3 for the tetragonal wells, 1-4 for the trigonal wells and 1-6 for the orthorhombic 
wells. The sets of states localised in the tetragonal wells form the T 63 e JT effect, 
those in the trigonal wells the T 63 t JT effect and those in the orthorhombic wells the 
T C3 (e + t2) JT effect. The values of the a, for each well k in linear coupling, which will 
be called af), are given in the Appendix, together with the three orbital states associated 
with each well and their energies. The effect of bilinear coupling is considered below. 
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2.2. Bilinear coupling 

In the paper by Bates et a1 (1987), bilinear coupling was included approximately by 
assuming that the changes in the aik) from the results obtained in linear coupling are 
small. With this approximation, it was found that bilinear coupling has no effect on the 
energies of the tetragonal and trigonal minima, but that the energy of the orthorhombic 
wells becomes 

E = - E E T  = -(+E, + $ E T  + EBL) 

where E E  and E, are the JT energies defined in the Appendix and 

E B L  = 8( Kk ( G / f i u T )  (VBL/VEVT). (2.10) 

Bersuker and Polinger (1974) included bilinear coupling exactly, to show that the 
positions of the wells aik) are multiplied by cp2 f o r j  = 6' and E and by cp, fo r j  = 4 , 5  and 
6 with respect to the results obtained in linear coupling, where 

y e  (1 - 2C)/(1 - A*)  cp, = (1 - B/2)/(1 - A 2 )  (2.11) 
with 

A = - (~ '3/2> (vBL/wEwT> B = -vEvB,/vTyw& c = A ~ / B .  

The energy of the orthorhombic wells is then 

E = - E E T  = - ( a E E q 2  + $ETq) t )  = -($E, + $ E T  + E B L )  (1 - A*)- ' .  (2.12) 

It should be noted that VE = -VEp, VT = -(2/*)VTBp, VBL = -(2/V'3)WBP and 
yBp = 1, where the labels BP refer to the definitions used by Bersuker and Polinger. 

The above results, which will be used throughout the rest of this paper, are also 
obtained if bilinear coupling is included exactly in the method of Bates et a1 (1987). They 
are equivalent to the previous results to first-order powers of VBL. 

The two orbital excited states in each well have energies 

A 1  = 3 ~ 5 ~ 9 :  = %EE92  + ETQ??) (2.13) 

relative to the ground state. The orthorhombic wells are absolute minima if 

3qt a ~ ( 4  - V e l  

3% 3 (4 - w e )  

i f q a 1  

i f q s l  

(2.14) 

Further discussions of this point have been given by Bersuker and Polinger (1974,1983, 
1989), Muramatsu and Iida (1970). Bacci et a1 (1975) and Estreicher and Estle (1985). 

2.3. Cubic states 

The orbital states localised in each well are eigenstates of the transformed Hamiltonian 
The Hamiltonian $e3 introduces a ladder of phonon states of equal separations 

hwj to each of these orbital states. For T @ e JT systems, these eigenstates are exact 
eigenstates of the total transformed Hamiltonian when VT = 0. Better eigenstates for 
TC3 t and T @  (e + tz) JT systems can be obtained by including %$ via perturbation 
theory. These calculations are presented in 0 3 below, To obtain approximate eigenstates 
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of the untransformed Hamiltonian Ye, it is necessary to untransform the eigenstates of 
the transformed Hamiltonian by multiplying them by the unitary transformation U 
appropriate to the well concerned. These particular forms of U ,  which will be called U,, 
can be written as (Bates et a1 1987) 

(2.15) 

where 

cy) = - d/npwi/2 Lyfk'. 
The untransformed ground states are written in the form 

lxhk) ; 0) = Uk lxhk) ; 0)  (2.16) 

where XLk) is the appropriate orbital state and the 0 indicates that there are no phonon 
excitations present in the transformed picture. As the U,  contain phonon operators, the 
states do contain phonon excitations in the untransformed picture. The two orbital 
excited states in each well will be called 1Xik)'; 0) and IXik) ; 0). The specific form of the 
states for the tetragonal, trigonal and orthorhombic wells are given in the Appendix. 

The untransformed states localised in the wells are good eigenstates of the system as 
a whole in infinite coupling. However, for T C3 t and T 63 (e + t2) JTsystems, the oscillator 
parts of the untransformed states are not orthogonal to each other in finite coupling. To 
account for this, linear combinations of the states which are both orthogonal and cubic 
are constructed using projection operator techniques. This generates T I  triplet ground 
states for both systems, and A, singlet and T2 triplet tunnelling states for the T C3 t and 
T €3 (e + t2) JT systems respectively. These states can be shown to be good eigenstates 
of X for strongly and moderately coupled systems (Bates et a1 1987, Dunn 1988). The 
resulting states, together with their energies, are presented in the Appendix. 

3. Anisotropy 

In the following sections, perturbation theory will be used to correct the transformed 
ground states associated with the trigonal and orthorhombic wells to account for the 
effect of %;. This will allow effective oscillator frequencies for T C3 t and T C3 (e + tz) JT 
systems to be calculated. The results will be compared with those of the simple dynamic 
variable calculations. 

3.1. Effective frequencies for the T C3 t J T  system 

For simplicity, it will be assumed that V ,  = 0 in the calculations for this system. In this 
limit, the Hamiltonian %; (2.9) can be simplified to 

X i  = KT (t, + $@))(b, + b:) j = 4,5 and 6 (3.1) 
1 

(in second-quantised form) where z4 = -(2/d3)Tyz, etc, and KT and the 0;') are 
defined in the Appendix. To first order in perturbation theory, corrects the trans- 
formed ground state lXhk); 0) (localised in well k )  by coupling to the excited states 
1Xik); 4), 1Xik); 5 ) ,  1Xik); 4), lXik); 5) and 1Xik); 6), which have an energy of approxi- 
mately 3ET with respect to the ground state. However, these excited states are in 



Strongly coupled JT systems 381 

turn coupled to states only 2hwT above the ground state, so that some higher-order 
perturbation corrections can be almost as large as the first-order corrections. In this 
section, the effect of %; on the states will be calculated to second order in perturbation 
theory. 

Standard perturbation theory to second order shows that the corrected ground states 
for these systems are 

jXbk); 0)  = ( 1  - d2A2)IXhk); 0)  + 6IAXik)) + S2IAXik)) (3 4 
where 6 is an index indicating the order of each term and 

I AXik))  = (A/3)( ; 4) + ; 5) + ; 6)) 

and 

IAXik)) = IAX@) + IAXit)) 

where 

with 

= /2x + aik)y  +- ~ $ ~ ) z )  etc 

A = - K,/d/3(3E~ ~ O T )  A‘ = - K ~ / g / 3 ( 3 E ,  + 
G = E T / ~ ( ~ E T  + h w ~ )  (3.4) 

G‘ = E T / ~ ( ~ E T  + %UT).  

The energy of the ground state in each well with the inclusion of 2; has been calculated 
to fourth order in perturbation theory, with the result that 

E = -ET = - ET f #LwT(1- z) (3.5) 

where 

with 

. ~ = 1 - 9 G .  

The calculations above have been performed using tetragonal coordinates because, 
although trigonal (C,,) coordinates may appear to be more appropriate in this system, 
different coordinates would have to be used for eachof the four trigonal wells. Tetragonal 
coordinates allow one set of calculations to be performed to cover all four wells. 
However, it is useful to divide the zero-point energy in (3.5) into contributions due to 
the relevant trigonal phonon modes for each well. In terms of the tetragonal modes, 
these modes are 
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It is thus found that the zero-point energy contribution to (3.5) due to the AI mode 
e$’)’ is $nuT, and for each of the E modes Qi’)’ and Qf ) ’  is Bhweff, where 

weff = wT(1 - $2). (3.7) 
Hence %; can be interpreted as changing the frequencies of the oscillators associated 
with the wells. This can be attributed to anisotropy in the potential energy surface around 
the minima of the wells. 

In previous approaches to T 8 t JT systems, anisotropic effects have been calculated 
assuming the Qi to be dynamic variables (Moffit and Thorson 1957, Caner and Englman 
1966, Bersuker and Polinger 1983, 1989, Clerjaud and CBte 1989). The first-order 
perturbation correction to the energies of the ground states due to %; is zero. The 
second-order correction to the energies is 

- Q~O$[ (Q&’) ’ ’> ’  + ( Q & k ) ’ ) 2 ] .  (3.8) 

In this approximation, the zeroth-order energy change caused by the Hamiltonian %,,lb 

is & ~ w $ [ ( Q i ‘ ) ’ ) ~  + ( Q ! j k ) ’ ) 2  + ( Q b k ) ’ ) 2 ] .  Hence %; can be seen to introduce effective 
frequencies Weff = d i m T  for the Qk’)’ and Q k k ) ’  modes. 

The above dynamic variable calculation is good in the infinite-coupling limit (x + 0). 
In this limit, the effective frequency (3.7) calculated using the phonon operator approach 
reduces to 

Oef f  = WT(1 - 4 - A). (3.9) 

These are the first three terms in the Taylor expansion of (1 - 8)’/*. Hence the two 
approaches give identical results in this limit up to the accuracy of the calculations. It 
should be noted that Schulz and Silbey (1974,1976) obtain a similar series expansion for 
weff in the strong-coupling limit. In the phonon operator approach, the excited phonon 
states in each well have effective frequencies which depend on the number of phonon 
excitations in finite coupling. In the dynamic variable approach, all excited states have 
the same effective frequency as the ground state. 

3.2.  Effective frequencies for the T 63 (e + t2) JTsystem 

The perturbative effect of 3?; in T (23 (e + t2) JT systems will now be calculated using the 
phonon operator approach. The Hamiltonian for this system can be written as 

%; = 2KE 2 ( E j  - njk) ) (b j  + b f )  
8, E 

vBL ( ( b j  + bi+) + -- KT 1‘)) t j ( b ,  + b $ ) ]  (3.10) 
~ 

- ~ K E K T  - 
VE VT 

where the subscripts 84 = Ox,  85 = 8, and 06 = 8, in the quantities b ,  and nsj, with 8, 
and OY defined by equation (2.5). The effect of %; will be calculated to first order in 
perturbation theory only, owing to the added complications caused by the necessary 
inclusion of bilinear coupling. 



Strongly coupled JT systems 383 

Using techniques described in 0 3.1, it can be seen that appropriate new states for 
each of the orthorhombic wells k are 

1XLk);O) = lX&k);O) + 6A,IX(k) ;A2)  + 6A21Xik);Bl) + SA31X6k);A1eAlt) 
+ 6h,(B(X$";A1,B1) + (fi/2)(X$k);A,B2)) (3.11) 

where 

(3.12) 

and where the single-phonon excitations are represented by the appropriate irreducible 
representations of the C2" group for the well concerned. Thus, for wells k = 1 and 2, 
A2 = E ~ ,  Ale = e,, Al, = 6, B1 = 6, and B, 6,, where 

ez  = e 6, E ( l / ~ ) (  4 4  + 5) .  (3.13) 

The appropriate phonon excitations for wells k = 3 and 4 can be obtained by permuting 
z + x + y and 4 + 5 + 6 in the definitions (3.13), where 

(3.14) 

The excitations for wells 5 and 6 are given by a further permutation of the symmetry 
labels. The energy of each of these ground states will be defined to be E = -EET, where, 
to order a2 in perturbation theory, 

E,  = - (Vj/2)e - 4~ = (v3/2)e - &. 

- E E T  = - E E T  + hwE(1 - $.I) + $h0T(1 - B I )  
- 4fi@EfiWT(VBL/VEVT)(K+ (3.15) 

where 

J = EE/(d1 + h W E )  

K = ~(KE/~coE)(KT/~oJT>A, 
(3.16) 

As for T 8 t JT systems, this can be interpreted in terms of effective frequencies. The 
term in K will be neglected, as it is of order ViL/A2. In this approximation, the frequency 
of the B2 mode is unchanged. Effective frequencies for the remaining modes are 

I =  [ET/(A2 + fiwT)[l+ (B/d)qeI 

M = B(KE/~wE)(KT/~wT)A~. 

W A ~  = w ~ ( 1  - 8.7) 
= wT(]. - $4 

for the A2 mode 

for the B1 mode. 
(3.17) 

The two A, modes Ale and A,, are no longer normal modes, and effective frequencies 
for them are only partially defined. Their sum is given by 

O A l O  +wA16 = O E I 1  -(8VBL/h2VEVT)[KEKT/(oE +OT>l)+wT(l -#I>* 

in each of the wells k = 1 and 2 is found to be 

E = - ( ~ V E  Q A~ ) /4A 1 - [ (*VT Q B 

(3.18) 

If the Qi are treated as dynamic variables, the change in energy of the ground states 

/4A 2 1(1 + (B/4> (?' e 

2 ( - \ / ~ ; / ~ ) V B L Q A ~ ~ Q A ~ ~  (3.19) 
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to second order in perturbation theory, neglecting terms of order ViLQ4/A2. The zeroth- 
order energy change caused by the Hamiltonian Xvib can be written as Zjfpw7 Q;” where 
the Q; are the collective coordinate for the CZv group. It can thus be seen that again the 
frequency of the B2 mode is unchanged, but that appropriate effective frequencies for 
the remaining modes are 

@A1 = wE(1-V/q?)1’2 

W B ~  = w ~ ( 1  - 2[1+ (B/4)qeI2 / (qqe  + qt)}1’2 

for the A2 mode 

for the B1 mode. 
(3.20) 

Again, Q A l e  and Q A l t  are not normal modes. Effective frequencies for the two new AI 
normal modes can be found by diagonalising the matrix 

(3.21) 

where the basis vectors are Q A l e  and Q A l t ,  respectively. The + terms refer to wells 1 , 3  
and 5 and the - terms to wells 2 , 4  and 6. 

The above effective frequencies are identical with those obtained by Bersuker and 
Polinger (1989). (Note that they use irreducible representations labelled according to 
the D2h subgroup of Oh rather than to the CZv subgroup of Td.) As for T 8 t JT systems, 
these effective frequencies are good in the infinite-coupling limit. In this limit, the 
effective frequencies (3.17) obtained using phonon operator techniques reduce to 

u A z  = wE(1-~/2q: )  

which are the first two terms in the Taylor expansions of the dynamic variable results 
(3.20). Such expansions are valid under the conditions (2.14) which ensure that the 
orthorhombic wells are absolute minima. Both approximations show that bilinear coup- 
ling mixes together the two AI modes Ale and Alt, although the actual results have 
different forms in the two cases. 

wB1 = wT{1-[ l+(B/4)q ,12/ (rqe  +q?>> 

3.3. Cubic states with anisotropy 

Anisotropic ground states for the T 8 t JT system can be written down directly from the 
simple isotropic states by replacing a by a, etc, in equation (A9) and defining new 
normalisation constants NTt and SITA, which involve the overlap between the oscillator 
parts of the anisotropixound states in any two of the trigonal wells j and k .  The new 
states will be called /T,zt)  and I=). The overlap, which will be called Y,, can be 
evaluated by use of relations such as (Dunn 1988) 

(01 Uj+ Uk In,) = - D{Jk)  (3.22) (n ,  1 U: U k  Inl) = 6,[ - D{Jk)D{Jk)  

where n,, nl = 6, E ,  4 , 5  or 6, 6,[ is the Kronecker delta function and 
@’k) = C{l) - Cfk). (3.23) 

In addition, it is necessary to know that 

(01 U t  Ukln:) = Dfik) , /d/z .  

The result, to order b2, is 

yt = + f ( 4  + f(fi2)l 

(3.24) 
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where 

f(6) = b(1 - x) 
and 

f ( S 2 )  = &(1 - x ) [  -17(2 +x) + 64/(1 +x) + 1 / ~ ] .  (3.25) 

It should be noted that, despite the fact that f(6’) --f in the infinite-coupling limit 
(x + 0), due to the term in 1/x, Yt  --f 0 as S,/x + 0 in this limit. 

The energies of the anisotropic states can be obtained by recalculating El,  and EZt 
and replacing S, by Y ,  in equation (A12). Owing to the cumbersome nature of the final 
results, they will not be presented here. An expression for their energy difference A is 
given in 8 4. 

Cubic states for the T €4 (e + t2) JT system can be written down by replacing x y ,  by 
G+, etc, in equation (A17) and defining new normalisation constants NTlet and JV,,,, 
involving the new oscillator overlap Yet between, for example, wells 1 and 2. This has 
been calculated (again using the relations (3.22)-(3.25)) to be 

(3.26) 

to order 6. The energies of these states can be obtained by recalculating Elet and EZet 
and replacing Set by Yet in equation (A20). 

Ye t  =S,t[1 + U q e  +@qt +6qeqt (K+M)]  

4. Inversion splittings 

4.1. Inversion splitting for T €4 t JT  systems 

The inversion splitting between the TI and A2  ground states of the T €4 t JT system can 
be calculated from the expressions (A12) adapted to account for anisotropy. After some 
algebraic manipulation, it can be shown that 

A = [StET/(3 f Yt) ( l -Y t )][1+h(6)+h(62)]  (4.1) 

h(6)  = - 9 x - $(1 - x )  

where 

and 

h( 6’) = 3~ + (1 - x ) [  1 - 4 1 ~  + 6 / ~  - 22/( 1 + x)]. 

In the infinite-coupling limit, A +- 0, despite the l/x dependence in h(S2) ,  due to the 
dominating behaviour of S,. 

All previous calculations for A result in an expression of the form 

A = ~ E J T  exp[-b EJT/hwT] ( 4 4  
where EJT = ET. For example, the numerical calculations of Caner and Englman (1966) 
and Englman et al(1970) have this form with a = 1.32 and b = 1.2405 for E T  < 4 (result 
A), and a = 1.2 arid b = 1.2 for E T  > 4 (result B). Analytical perturbation calculations 
performed by Schulz and Silbey (1974) for strong but finite coupling suggest that a = 
1.679 and b = 3 (result C). If the oscillator frequencies are replaced by the effective 
strong-coupling values of d @ w T ,  then a = 1.89 and b = 1.2405 (result D). Bersuker 
and Polinger (1989) obtain the results that a = 2 and b = 1.24 (result E)  in very strong 
coupling. 
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Figure 1. Variation in the inversion splitting A between the T,  and A2 ground states of the 
T C3 t JT system as a function of the JT energy ET for each of the approaches A-G defined in 
the text. 

The simple expression for A neglecting anisotropy (A14) can be approximated to 
the form of equation (4.2) in strong coupling, with a = 9 and b = Q (result F). (Note 
that a similar result was obtained by Schulz and Silbey (1974) and by Judd (1974).) 
Unfortunately, it is not possible to write algebraically our anisotropic expression for 
A (equation (4.1)) in the form of equation (4.2). Therefore, the result has been plotted 

Figure 2. Variation in the quantity In A - In ET - In S, as a function of ET for each of the 
approaches A-G. 
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as a function of E T  (result G), together with all the previous results (A-F) listed above 
(figure 1). It can be seen that the differences between the seven approaches cannot be 
resolved on a direct plot of A in strong coupling. Hence a further plot has been made of 
the variation in the quantity In A - In E T  - In St as a function of ET for very strong 
coupling (figure 2). On this graph, an equation of the form (4.2) will be a straight line 
with gradient 4 - b and intercept In a. It can thus be seen that our anisotropic calculations 
tend towards the form (4.2) with a = 3.1 and b = 1.303 in very strong coupling (ET = 
30hwT). Our result lies between the results of simple isotropic calculations (C and F)  
and the more exact infinite-coupling results (A, B, D and E) in this limit. This is to be 
expected, as our method should reproduce the infinite-coupling results in infinite orders 
of perturbation theory only. The values of a and b both decrease in value towards weaker 
couplings, such that our values agree well with the numerical results of Caner and 
Englman (1966) in the moderate-coupling region 2 < ET/hw, < 5 .  

4.2. Inversion splitting for T C3 ( e  + t2 )  nsystems 

The inversion splitting between the TI and T2 ground states of T C3 (e + t2)  JT systems 
has been calculated from the expressions (A20) corrected for anisotropy. Owing to the 
complicated nature of the calculations, the final result will be given here, neglecting 
terms of order ViLhw and less. In this approximation, we find that (to order 6) 

A = [3Set/4(1 - Y e t ) 2 1 { E ,  + QET(1 - q t ) ( l  + q e  - 2qt)  

+ iJJ[E,q3, - 2ETq:(2 - q e ) I  

+ 2Mq e [-2hwT(1 - 2q e + q t + 3q t (EE q e  + 2ET q ?>I>. 
+ izqt[EEqe!l + q e )  + 4ETq:l - 3KEEg?2qt(3 - 9,) 

(4.3) 
To obtain this result, we have used the definitions of I and J to rewrite terms in hw in I 
and J as functions of E E  and E T .  We have then used the relation (A23) between EE and 
E T  to simplify the result further. The expression for A can be written in terms of E E T  by 
use of the relation (A23), although this will not be attempted here. 

It is useful to compare the form of A in (4.3) with the isotropic result (A22) by plotting 
A as a function of E E T  for different parameter values. For simplicity, we shall restrict 
ourselves here to the special case wE = wT = w .  It is desirable to choose values of 
quadratic coupling that ensure that the orthorhombic wells are energy minima. Hence 
(from equation (2.14)) it is necessary to ensure 

where 

F B L  = (VBL/VEVT)ETG 
In figure 3, A is plotted for q = 1.2. For this value of 7, the orthorhombic wells will only 
be energy minima if F B L  > -i?z ( = 0.0833). Graphs have been plotted for F B L  = 0.0867 
and 0.140. In figure 4, A is plotted for 7 = 0.8, for which it is necessary to choose 
FBL > k (= 0.0416). Graphs have been plotted for FBL = 0.047 and 0,100. It can be 
seen that, in all cases, anisotropy reduces A in weak coupling and increases it in strong 
coupling. However, it is difficult to make further comments on the effect of anisotropy 
as the difference between the curves is small. 
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Figure 3. Variation in the inversion splitting A between the TI and T2 ground states of the 
T 64 (e + t2) JT system as a function of the JT energy EET for wE = wT and fixed 17 (11 = 1.2; 
F&Ii = 0.087; F& = 0. 140):-----,simp1eisotropiccalculationsforFBL = FklL;---,simple 
isotropic calculations for FBL = F # ;  anisotropic result for FBL = FgL; ---, 
anisotropic result for FBL = F&. 
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Figure 4. Variation in the inversion splitting A between the Tl  and Tz ground states of the 
T 64 (e + t2) JT system as a function of the JT energy EET for wE = wT and fixed 11 (11 = 0.8; 
FgL = 0.047; F&! = 0,100): ----, simpleisotropiccalculationsfor FBL = F # ; - - - ,  simple 
isotropic calculations for FBL = FfJ; anisotropic result for FBL = F&; ---, 
anisotropic result for FBL = F&. 
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We have looked for an empirical expression for A of the form of equation (4.2) 
with E,, = EET.  I t  can easily be seen that the simple expression neglecting anisotropy 
(equation (A24)) obeys such a relationship in strong coupling, with 

However, it is again impossible to write the anisotropic expression for A in this form 
algebraically. To look for an empirical relation of this form, plots have been made of the 
variation in In A - In E E T  - In Set as a function of EET, for the special case wE = wT. On 
these graphs, expressions of the form (4.2) will be straight lines with intercept In a and 
gradient m, where 

m = (3qe + 2 9 ,  - 5qeqt)/2(2 - q e  - q t >  - b. (4.6) 
Figure 5 shows the results (both with and without anisotropy) for the curves which were 
plotted in figure 3. Figure 6 shows the corresponding results for the curves plotted in 
figure 4. The graphs show that the anisotropic expressions for A does depend on E E T  in 
an approximately linear manner in strong coupling and hence that it can be approximated 
totheformofequation (4.2). Itcanbeseenthat,inallcases,mincreaseswiththeaddition 
of anisotropy, indicating that b decreases. This is the same qualitative dependence that 
was observed for T E3 t JT systems. 

For the parameter values plotted, the effect of bilinear coupling on a and b for the 
isotropic results is very small. With anisotropy, the reduction in b is approximately 
independent of the strength of the bilinear coupling in strong coupling, but the effect on 
the value of a is quite large. However, the value of b is found to depend on the value of 
r l .  

I I I 1 I I I 

2.5 1 

FigureS. Variationin the functionln A - In EE - In Se, as afunctionof E,,fortheparameter 
values plotted in figure 3: -, coincident isotropic results for F B L  = FgL and FBL = FCL; 

, anisotropic result for FBL = F g l ;  ---, anisotropic result for FBL = FgL. 



390 J L Dunn and C A  Bates 

I I I I I I I I I 
5 10 15 20 

EEi  / h  w 

Figure6.Variationin thefunctionln A - In EE - In S,,asafunctionofEETfortheparameter 
values plotted in figure 4: -, coincident isotropic results for F B L  = F!L and F B L  = F t l ;  

, anisotropic result for FBL = FgL; ---, anisotropic result for FBL = FFL. 

5. Conclusions 

This paper has extended the transformation method for T 8 t andT 8 (e + t2) msystems 
to include the Hamiltonian a?; via perturbation theory. The energy corrections to the 
ground states localised in potential wells have been interpreted in terms of anisotropic 
oscillator frequencies. It was shown that, in the infinite-coupling limit, successive orders 
of perturbation theory reproduce successive terms in the Taylor expansions of effective 
frequencies obtained using other analytical methods. However, it was shown that the 
terms obtained differ from the previous results in strong but finite coupling. 

The ground states of T 8 t and T 8 (e + t2) JT systems corrected to account for a?; 
were used to show that anisotropy plays an important role in determining the inversion 
splittings in both of these systems. The anisotropic value of A for the T 8 t JT system 
was shown to compare well with existing numerical calculations in moderately strong 
coupling, and to lie between the anisotropic result and previous analytical results with 
anisotropy in the infinite-coupling limit. To our knowledge, A has not previously been 
calculated for the T 8 (e + t2) JT system with anisotropy. 

Many impurity ions in semiconductors are known to exhibit T 8 t and T 8 (e + t2) 
JT effects (Ulrici 1984). The anisotropic states obtained in the above calculations can be 
used to help to model such systems. In particular, analytical formula for JT reduction 
factors corrected to account for anisotropy can be calculated. Such calculations are 
important, as the reduction factors appear in effective Hamiltonians, which provide the 
simplest means of modelling these systems. These models in turn can be used to help to 
identify unknown impurities, together with their charge states, and to modbl data 
obtained by techniques such as EPR, optical absorption and phonon scattering. Cal- 
culations of both first- and second-order reduction factors for these systems will be 
published shortly (Bates and Dunn 1989, Dunn and Bates 1989). 
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The transformation method is currently being extended to E E3 e JT systems, where 
it is hoped that further important results will be obtained. It is also being extended to 
the modelling of JT systems in which neither Oh nor Td symmetry holds (such as some 
complexes in semiconductors). 
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Appendix. Some results for the tetragonal, trigonal and orthorhombic wells 

The unitary transformation method of Bates et a1 (1987) and Dunn (1988) predicts 
energy wells of tetragonal, trigonal and orthorhombic symmetries, whose minima are at 
positions - ajk)fi in phonon-coordinate space, where 

ajk) = - (Vj/A,uco,2)njk). (All  

The values of nfk) for each of these wells are given below, together with the energies of 
the wells and the states localised in them. Results are also given for the cubic tunnelling 
states which can be derived from them. 

The energy of the minima is the JT energy - EE,  where 

E E  = 4(Ki/fiwE) KE = - VE-. 

The three orbital states in each well have 

xp = z xp = x xp = y 

xp = x xp = y xp = z 
xi3) = y xp = z xi3) = x 

where the excited states I X f ) ;  0 )  and 1Xik); 0 )  are degenerate with each other at energy 
3EE relative to the ground states. 
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A2. Results for T C3 t Jrsystems 

The trigonal wells have nikj = ngkj = 0 and nlk) = (l/gv’3)ofkj fo r j  = 4,5 and 6, where 

ap’ = = - &’ = 1 

062’ = - ai21 = @ = 1 

- 4 3 )  = 4 3 1  = 4 3 )  = 1 

- 4 4 )  = - 4 4 )  = - 064’ = 1. (A5) 

The energies of the minima of the wells are -ET, where 

The ground states in the wells have 

For simplicity, the notation Xi1) = a ,  Xi2) = b, Xi3) = c and Xi4) = dis  used to label the 
four wells. The degenerate excited states in each well, which have energy 3ET relative 
to the ground states, are 

Cubic tunnelling states for this system consist of a T I  triplet and A2 singlet for T, ions. 
The z-type component of the triplet and the singlet states are (Dunn 1988) 

/Tlzt)=NTI(-la’;O) + Ib’;O)+ I c ‘ ; O ) -  1d’;O)) 

lA2t) = NAt(lU’; 0) + Ib‘; 0) + IC’; 0) f Id’; 0)) 
(A91 

where 

1 = 4N$,(1 + ASt) 1 = 4Nit(1 - S,) 

and S, is the oscillator overlap between any two of the trigonal wells, which can be 
evaluated to (Dunn 1988) 

St = exp[ - 9 (K~/ho,)’]. (Al l )  

The x-  and y-type states of the triplet can be found from the above by cyclically inter- 
changing x ,  y and z. The energies of the triplet and singlet are (Dunn 1988) 

ETt =4N&(Elt -S tE2 t )  EAt = 4N2At(Elt f 3 S t E 2 t )  (A121 
where 

This gives an inversion splitting of 
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A3. Orthorhombic wells 

In linear couplings, the positions of the orthorhombic wells are defined by 

nQ“ = nQ2) = t 
n(3) = 

-nil) = n&2) = -n$3) = 4 4 )  = - n f )  = n$6) = +j/2 

4 3 )  = nQ4) = n f )  = nQ$ = -4 
( A 1 9  (4 )  = - nL-5) = -n$) = +j/4 

E n E  

and all other nr) = 0. When bilinear couplin is included, n(e) and np) are multiplied by 

energies of the states in each minima are presented in the main text. The three orbital 
states in each well have 

qe with respect to the above values, and ni’, 7. n f )  and n f )  are multiplied by qt. The 

xp = xy, xp = xy- xp = z 

xp = xy- xp’ = xy ,  xp = z 

xb3’ = y z ,  xp = yz -  xi3) = x 

xL4) = yz- X(4) = y z ,  xi41 = x 
x65’ = zx+ xp, = zx- xi51 = y 

xp = zx- xp = zx+ xp = y 

xy+ = (I/v‘/~>(x f y> etc 

where 

Cubic tunnelling states consist of a lower T1 triplet and upper T2 triplet, whose z-type 
components are 

/ T l z e t )  = NTle t [  1Z.k ; 0) f IzXL ; 0) + / y z ;  ; 0) - lyz‘ ; o)] 
and 

/ T 2 z e t ) = N T ~ e t [ l Z X k ; O )  + /zXL;O) - lYz:;o)+ lYz’;o)] 

respectively, where 

4N2,1et(1 + S e t )  = 1 4 N + * e t ( 1  - S e t )  = 1 

’et = exp[-%KE/hWE)2Q)2 - ( K T / h W T ) 2 q ? 1  

(A17) 

(A181 

and Set is the oscillator overlap between, for example Ixy ; ; 0)  and /yz; ; 0), given by 

in the approximation of Bersuker and Polinger (1974). This reduces to the result of Bates 
et a1 (1987) to first-order powers of VBL. Again, the x- and y-type triplet states can be 
obtained from the z states by cyclically interchanging x, y and z.  The oscillator overlap 
between, for example, the states Ixy ; 0) and Ixy L ; 0)  is also non-zero. This overlap, 
which will be called jet, can be shown to be 

s e t  = exp[ -2(KT/hwT)2q?]. (A19) 

(A201 

The energies of the triplets are 

ETlet = 4N+1et(Elet  + 2SetE2et )  ETzet  = 4N+,et ( E l e t  - 2Set  E z e t )  
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